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Abstract

The orexin neurones play an essential role in driving arousal and in main-

taining normal wakefulness. Lack of orexin neurotransmission produces a

chronic state of hypoarousal characterized by excessive sleepiness, frequent

transitions between wake and sleep, and episodes of cataplexy. A growing

body of research now suggests that the basal forebrain (BF) may be a key site

through which the orexin-producing neurones promote arousal. Here we

review anatomical, pharmacological and electrophysiological studies on how

the orexin neurones may promote arousal by exciting cortically projecting

neurones of the BF. Orexin fibres synapse on BF cholinergic neurones and

orexin-A is released in the BF during waking. Local application of orexins

excites BF cholinergic neurones, induces cortical release of acetylcholine and

promotes wakefulness. The orexin neurones also contain and probably

co-release the inhibitory neuropeptide dynorphin. We found that orexin-A

and dynorphin have specific effects on different classes of BF neurones that

project to the cortex. Cholinergic neurones were directly excited by orexin-A,

but did not respond to dynorphin. Non-cholinergic BF neurones that project

to the cortex seem to comprise at least two populations with some directly

excited by orexin-A that may represent wake-active, GABAergic neurones,

whereas others did not respond to orexin-A but were inhibited by dynorphin

and may be sleep-active, GABAergic neurones. This evidence suggests that

the BF is a key site through which orexins activate the cortex and promote

behavioural arousal. In addition, orexins and dynorphin may act synergis-

tically in the BF to promote arousal and improve cognitive performance.
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Orexin-A and -B (also known as hypocretin-1 and -2) are

two neuropeptides produced by a cluster of wake-active

neurones in the lateral hypothalamus (de Lecea et al.

1998, Sakurai et al. 1998, Lee et al. 2005b, Mileykov-

skiy et al. 2005). The orexin neurones heavily innervate

brain regions involved in arousal and excite post-synaptic

neurones through the two orexin receptors Ox1R and

Ox2R (hypocretin-1 and -2 receptors) (Peyron et al.

1998, Sakurai et al. 1998). Over 90% of people with

narcolepsy with cataplexy have very low or undetectable

orexin levels in their cerebrospinal fluid, likely from an

autoimmune attack on the orexin-producing neurones

(Peyron et al. 2000, Thannickal et al. 2000, Mignot et al.

2002, Crocker et al. 2005). Dogs lacking Ox2R and mice

lacking orexin peptides or the orexin receptors have a

phenotype strongly resembling human narcolepsy, with

an inability to remain awake for long periods and sudden

episodes of muscle atonia known as cataplexy in the

midst of active wake (Chemelli et al. 1999, Lin et al.

1999, Willie et al. 2003, Mochizuki et al. 2004). The

sleepiness of narcolepsy clearly demonstrates that the

orexin neurones are necessary for normal arousal, but

the specific brain regions through which orexins promote

arousal remain unknown.
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A growing body of evidence suggests that the basal

forebrain (BF) is a key site through which the orexin

neurones promote arousal. This paper comprehensively

reviews the anatomical, pharmacological and electro-

physiological studies, including data from our own in

vitro recordings on how the orexin neurones can

promote arousal by exciting BF neurones that activate

the cortex. A better understanding of how orexins act

through the BF should provide novel insights into the

neurobiology of arousal and may also lead to a better

understanding of disorders of cognition.

Role of the BF in cortical activation and

behavioural arousal

The BF is an essential wake-promoting region that

extends from the septum back to the substantia

innominata (SI) and is roughly defined by the presence

of magnocellular cholinergic neurones (Szymusiak

1995, Semba 2000, Jones 2004). In conjunction with

monoaminergic and cholinergic projections from more

caudal regions, the BF is considered a key extra-

thalamic relay to the cerebral cortex from the brain-

stem reticular activating system initially proposed by

Moruzzi & Magoun (1949) (Fig. 1). BF neurones

project to the cortical mantel in a topographical

pattern in which the medial septum and other ros-

tral-medial regions mainly project to the hippocampus

and cingulate cortex, whereas the SI, magnocellular

preoptic nucleus (MCPO) and other caudal-lateral

regions project to the amygdala, medial prefrontal

and most other cortical areas (Saper 1984). In addition

to ascending projections to the cortex, BF neurones

also project caudally to state-regulatory regions in the

lateral hypothalamus and brainstem (Swanson et al.

1984, Semba et al. 1989, Gritti et al. 1994, Semba

2000) (Fig. 1).

The BF is the major source of cholinergic input to the

cortex (Woolf 1991). During wakefulness and rapid eye

movement (REM) sleep, cholinergic neurones of the

MCPO and SI fire most rapidly and acetylcholine

release in the cortex is maximal (Jasper & Tessier

1971, Marrosu et al. 1995). During non-REM sleep, the

cholinergic neurones are relatively silent and acetylcho-

line levels are low (Duque et al. 2000, Jones 2004, Lee

et al. 2005a).

An additional and large population of cortically

projecting BF neurones produce GABA and a smaller

number produce glutamate (Freund & Gulyas 1991,

Gritti et al. 1997, Hur & Zaborszky 2005, Henny &

Jones 2008). GABAergic neurones account for about

one-third of the MCPO/SI cortically projecting neuro-

nes, and they are co-distributed with the cholinergic

population (Gritti et al. 1997). In the MCPO/SI there

are two physiologically distinct groups of GABAergic

neurones that can be antidromically activated from the

cortex; one is active during cortical arousal, and a

second group discharges in association with cortical

slow wave activity and may express a2A-adrenergic

receptors and/or contains neuropeptide Y (NPY) (Du-

que et al. 2000, Manns et al. 2000, Modirrousta et al.

2004).

Activation of BF neurones with glutamate agonists

increases wake (Manfridi et al. 1999, Cape & Jones

2000, Wigren et al. 2007). Conversely, selective lesions

of the cholinergic population can transiently reduce

wake, whereas excitotoxic lesions that kill both cholin-

ergic and non-cholinergic neurones increase EEG delta

activity (Kaur et al. 2008). Even larger lesions that

encompass most of the BF markedly reduce wake

(Buzsaki et al. 1988). Furthermore, inhibition of BF

neurones with an adenosine A1 receptor agonist

promotes sleep, even after lesioning of the cholinergic

population (Portas et al. 1997, Blanco-Centurion et al.

2006a). These results demonstrate the importance of

the BF in promoting wake and suggest that cholinergic

and non-cholinergic neurones across much of the BF

act synergistically to promote wake (Szymusiak et al.

2000, Jones 2005).

Figure 1 The ascending arousal systems are diffusely projecting

neurones (blue) that use acetylcholine, monoamines or neuro-

peptides to produce broad changes in neuronal activity. The

pedunculopontine (PPT) and laterodorsal tegmental (LDT)

nuclei are the major cholinergic inputs to the thalamus. The key

monoaminergic nuclei include the locus coeruleus (LC) which

is a major source of noradrenaline (NA) to the hypothalamus

and cortex, the dorsal and median raphe nuclei which produce

serotonin (5-HT), the A10 cell group of the ventral periaqu-

eductal grey matter (vPAG) which produces dopamine (DA),

and the tuberomammillary nucleus (TMN) which produces

histamine. In addition, peptidergic neurones in the lateral

hypothalamus (LH) produce orexins and melanin-concentrating

hormone (MCH). All these regions innervate the basal forebrain

(BF), and BF neurones send descending projections back to the

lateral hypothalamus (red), thalamus and brainstem.
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Anatomical studies

Although the orexin peptides are produced by a

relatively small number of neurones in the perifornical

region of the lateral hypothalamus, these neurones

project widely and orexin receptors are distributed

through much of the brain (Peyron et al. 1998, Sakurai

et al. 1998, Nambu et al. 1999, Hervieu et al. 2001,

Marcus et al. 2001). A robust projection from the

lateral hypothalamus to the BF was described even

before the discovery of the orexin peptides (Zaborszky

& Cullinan 1989, Cullinan & Zaborszky 1991). More

recently, studies have shown that projections from

orexin neurones make a substantial contribution to this

pathway (Fig. 1), and orexin terminals innervate the BF

from the medial septum back to the MCPO/SI region

(Peyron et al. 1998, Wu et al. 2004, Espana et al. 2005,

Fadel & Frederick-Duus 2008). The orexin projections

to the BF are predominantly ipsilateral, show no

apparent topographic organization and target multiple

BF regions and send collateral projections to the

brainstem (Espana et al. 2005). In addition, orexin

fibres closely appose and synapse on cholinergic neuro-

nes of the BF (Wu et al. 2004, Espana et al. 2005, Fadel

et al. 2005, Fadel & Frederick-Duus 2008). An ultra-

structural study reveals that 70% of the cholinergic

neurones of the medial septum receive at least one

orexin immunoreactive bouton on their cell body or

proximal dendrites (Wu et al. 2004). With light micros-

copy, orexin immunoreactive appositions are common

on SI cholinergic cell bodies and dendrites, suggesting

direct activation of BF cholinergic neurones by the

orexin neurones (Fadel et al. 2005, Fadel & Frederick-

Duus 2008).

In addition, BF neurones send reciprocal connections

back to the orexin neurones (Henny & Jones 2006a,b)

(Fig. 1). Most of these descending projections to the

orexin neurones use GABA and glutamate and only 4%

are cholinergic (Henny & Jones 2006b). However, the

orexin neurones are strongly excited by acetylcholine,

though the major cholinergic input probably comes

from the cholinergic neurones of the pedunculopontine

(PPT) and laterodorsal tegmental (LDT) nuclei (Ford

et al. 1995, Bayer et al. 1999, 2005, Sakurai et al.

2005). The BF glutamatergic input to the orexin

neurones may originate from wake-promoting neurones

that discharge in association with high muscle tone

(Henny & Jones 2006a). Indeed many non-cholinergic

BF neurones discharge during waking and are quiet

during non-REM and REM sleep (Szymusiak &

McGinty 1986, Lee et al. 2004). On the other hand,

the GABAergic input from the BF may originate from

sleep-active neurones (Duque et al. 2000, Modirrousta

et al. 2004) and may help inhibit the orexin neurones

during non-REM and REM sleep.

The BF neurones express both Ox1 and Ox2 recep-

tors. In the medial septum, Ox2R mRNA levels and

protein are expressed at high levels but Ox1R mRNA is

sparse (Trivedi et al. 1998, Hervieu et al. 2001, Marcus

et al. 2001). Neurones of the vertical and horizontal

limbs of the diagonal band show higher levels of Ox1R

mRNA compared to the medial septum, but still Ox2R

mRNA is more abundant (Marcus et al. 2001). No data

yet exist concerning the distribution of orexin receptor

subtypes in more caudal BF regions including the

MCPO/SI. In addition, pharmacological studies have

produced conflicting results, with some reporting that

BF neurones are more responsive to orexin-B suggesting

an Ox2R effect, whereas others conclude that orexin-A

signalling is more important (Eggermann et al. 2001,

Espana et al. 2001, Dong et al. 2006, Frederick-Duus

et al. 2007). Lack of selective orexin receptor antago-

nists has made it difficult to firmly establish the relative

roles of Ox1 and Ox2 receptors using pharmacological

approaches. Future studies using mice lacking Ox1 or

Ox2 receptors and especially mice lacking orexin

receptors in specific neuronal populations should help

determine which orexin receptor subtypes are necessary

to mediate wake-promoting effects of orexins in the BF

and in which BF neuronal types.

Measurement and manipulation of orexins in

the BF using microdialysis

Microdialysis is a very helpful method for measuring

orexin concentrations across sleep/wake states. The

orexin neurones are active during wake (Estabrooke

et al. 2001, Lee et al. 2005b), and a small study in cats

showed that orexin-A levels are high in the BF during

wake (Kiyashchenko et al. 2002). As expected, orexin

concentrations were lower during non-REM sleep but

surprisingly, orexin levels were high during REM sleep

(Kiyashchenko et al. 2002). This apparent release of

orexin-A in REM sleep was unexpected as the orexin

neurones are generally silent during REM sleep, except

for transient bursts of activity during phasic REM sleep

and just prior to awakening (Lee et al. 2005b, Miley-

kovskiy et al. 2005). Optogenetic activation of the

orexin neurones can trigger awakenings from sleep

(Adamantidis et al. 2007), and it is possible that in

addition to promoting wakefulness, the orexin neurones

help drive awakenings from sleep.

Local application of orexins to the BF promotes

wakefulness and improves cognitive performance. Infu-

sion of orexins into the BF induces acetylcholine release

in the cortex and strongly promotes wake for several

hours (Eggermann et al. 2001, Espana et al. 2001,

Thakkar et al. 2001, Fadel et al. 2005). In rats condi-

tioned to anticipate food, acetylcholine is released in the

cortex just before the expected arrival of food, but the
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behavioural response and the rise in acetylcholine is

blunted in rats with lesions of the orexin neurones and

adjacent cells in the lateral hypothalamus (Frederick-

Duus et al. 2007). This observation suggests that

orexins are necessary for the activation of BF choliner-

gic neurones, though it should be interpreted cautiously

as this type of lesion kills much more than just the

orexin neurones (Gerashchenko et al. 2001). Orexins

can also have direct effects in the cortex to improve

performance on an attention task by exciting the same

thalamocortical synapses that are activated by acetyl-

choline from the BF (Lambe et al. 2005). Thus orexins

may promote cortical activation and attention by

increasing cortical acetylcholine release and by directly

acting on thalamocortical projections.

Orexins may also act through non-cholinergic neu-

rones of the BF. Orexin-B excites GABAergic neurones

of the medial septum that project to the hippocampus

(Wu et al. 2002), and we have found similar effects of

orexin-A in cortically projecting, GABAergic neurones

of the MCPO/SI region (see below). In fact, micro-

injection of orexin-A into the BF still promotes arousal

after selective lesioning of the BF cholinergic neurones

(Blanco-Centurion et al. 2006b). Altogether these phar-

macological studies strongly support the hypothesis that

orexin stimulation of the BF is able to promote cortical

activation and behavioural arousal by acting on cho-

linergic and non-cholinergic neurones.

Electrophysiological responses to orexins

Several studies using in vitro slice recordings have shed

light on how the orexin neurones activate the BF

(Eggermann et al. 2001, Wu et al. 2002, 2004). Most of

these studies focused on the effects of orexins on medial

septum neurones that project to the hippocampus (Wu

et al. 2002, 2004), and so far, the cortically projecting

neurones of the caudal BF have received less attention.

Eggermann et al. (2001) reported early on that orexins

directly excites MCPO cholinergic neurones. They also

compared the effect of orexin-A and orexin-B and

concluded that because orexin-B had a stronger effect,

Ox2R and not Ox1R were responsible for orexin

response in the MCPO cholinergic neurones.

Much more is known about the responses of neurones

in the medial septum. Wu et al. (2004) found that

orexins directly excite septohippocampal cholinergic

neurones by two underlying ionic mechanisms: the

inhibition of a K+ conductance, presumably an inwardly

rectifying potassium current, and the activation of a

Na+/Ca2+ exchanger. Similar effects of orexin-A on a

constitutively active, inwardly rectifying potassium

current were also reported in cultured BF neurones of

the nucleus basalis (Hoang et al. 2004). In about 80%

of septohippocampal cholinergic neurones, these two

effects co-exist, whereas orexins only reduce a K+

current in the locus coeruleus, central amygdala and

thalamic neurones (Ivanov & Aston-Jones 2000, Bayer

et al. 2002, 2004, Bisetti et al. 2006) and only activates

a Na+/Ca2+ exchanger in neurones of the arcuate

nucleus and tuberomammillary nucleus (TMN) (Eriks-

son et al. 2001, Burdakov et al. 2003). Wu et al. (2004)

also found that cholinergic septohippocampal neurones

had similar EC50 values for orexin-A and orexin-B,

suggesting that Ox2Rs are responsible for the orexin

responses as suggested by the high levels of Ox2R

mRNA and protein in the medial septum (Trivedi et al.

1998, Hervieu et al. 2001, Marcus et al. 2001). Orexins

also directly excite GABAergic septohippocampal neu-

rones by activation of a Na+/Ca2+ exchanger, and the

dose–response curve for the two peptides suggests an

Ox2R-mediated effect as well (Wu et al. 2002). In

addition, orexins increase GABA release onto the

GABAergic septohippocampal neurones, and this effect

was spike-dependent, suggesting that it was mediated

by the activation of local GABAergic neurones within

the slice preparation (Wu et al. 2002).

To better understand how orexins promote cortical

activation, we examined the responses of cortically

projecting MCPO/SI neurones to orexins and dynor-

phin, another neuropeptide synthesized in the orexin

neurones (Chou et al. 2001, Crocker et al. 2005). We

identified cortically projecting MCPO/SI neurones by

injecting fluorescent latex beads (green) into the medial

prefrontal cortex (mPFC) that are retrogradely trans-

ported back to the BF. We also injected Cy3-p75-IgG

into the lateral ventricle (red) which immunolabels

cholinergic neurones in the BF as nearly all express the

p75 receptor (Hartig et al. 1998, Wu et al. 2000,

Arrigoni et al. 2006). Thus, cholinergic neurones pro-

jecting to mPFC were recognized by the presence of

both green beads and red Cy3-p75-IgG (Fig. 2). Non-

cholinergic, cortically projecting neurones contained

green beads but lacked red Cy3-p75-IgG (Fig. 3).

We found that SI cholinergic neurones were directly

excited by orexin-A but did not respond to dynorphin-A.

In addition, orexin-A increased the amplitude of evoked

glutamatergic excitatory post-synaptic currents (EPSCs)

in cholinergic MCPO/SI neurones (Fig. 2). We found

two populations of non-cholinergic MCPO/SI neurones

that project to the mPFC. In one cell type, orexin-A was

excitatory whereas dynorphin had no direct effect but

showed a slight inhibition of the evoked glutamatergic

EPSCs. These neurones showed the same electrophysio-

logical properties previously reported in GABAergic

neurones of the medial septum that project to the

hippocampus (Wu et al. 2000). These may be GABAer-

gic, cortically projecting neurones (Fig. 3). An additional

class of non-cholinergic cortically projecting neurones

that display different firing properties, including the
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(a)

(c) (d)

(b)

(e)

Figure 2 Cholinergic neurones of the magnocellular preoptic nucleus (MCPO) and substantia innominata (SI) are excited by

orexin-A but do not respond to dynorphin. (a) Two SI cholinergic neurones labelled with Cy3-p75-IgG (left) and the same neurones

under infrared differential interference contrast (IR-DIC) visualization. (b) Firing properties of MCPO/SI neurones during depo-

larizing (left) and hyperpolarizing current pulses [in tetrodo toxin (TTX) 1 lm, right], showing low threshold Ca2+, delayed firing

followed by hyperpolarizing potentials due to activation of IK(A) (arrowhead) and a small Ih. (c) MCPO/SI neurones do not respond

to dynorphin (10 lm), but orexin-A (300 nm) activates an inward current (Vh = )60 mV). (d) An SI cholinergic neurone that

projects to the medial prefrontal cortex is double labelled with retrograde fluorescent beads (green) and Cy3-p75-IgG (red) and has a

sustained increased in firing with orexin-A (trace below). (e) Orexin-A potentiates excitatory post-synaptic currents evoked by local

electrical stimulation (Vh = )60 mV).

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3 Non-cholinergic, cortically projecting neurones in the magnocellular preoptic nucleus (MCPO) and substantia innomi-

nata (SI) have two types of responses to orexin-A and dynorphin. (a) Two SI neurones retrogradely labelled with green fluorescent

beads from the medial prefrontal cortex. The lower cell is also labelled with red Cy3-p75-IgG, a marker for the basal forebrain

cholinergic neurones; the upper cell is a non-cholinergic. (b) A subset of these neurones has pronounced depolarizing sags during

negative current pulses (arrowhead) due to the activation of Ih. (c) Ih recorded in voltage clamp mode (Vh = )50 mV; )10 mV

pulses). (d) Spontaneous firing is increased by orexin-A (300 nm) but is unaffected by dynorphin (10 lm). (e) Inward current

activated by orexin-A (Vh = )60 mV). (f) Evoked excitatory post-synaptic currents are potentiated by orexin-A and inhibited by

dynorphin (Vh = )60 mV). (g) A second subset of non-cholinergic cortically projecting neurones in the MCPO/SI have burst

discharges, no Ih and no IK(A). (h) This type of neurone is inhibited by dynorphin (dotted line = )60 mV).
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lack of both Ih and IK(A), and that fire in short bursts

when depolarized from hyperpolarizing potentials

showed no response to orexin-A but was directly

inhibited by dynorphin. These cells may be sleep-active,

GABAergic neurones (Duque et al. 2000, Manns et al.

2000, Modirrousta et al. 2004). These results show that

orexins and dynorphin have specific effects on different

classes of BF neurones. These responses may provide a

synergistic mechanism by which the co-release of

orexins and dynorphin can activate cholinergic and

non-cholinergic wake-active neurones and can inhibit

non-cholinergic sleep-active neurones to promote wake-

fulness and improve cognitive performance.

Dynorphin and glutamate may act

synergistically to excite BF neurones

In addition to the orexin peptides, the orexin-producing

neurones contain other neurotransmitters. In rats, mice

and humans, essentially all orexin-producing neurones

also make the endogenous opiate dynorphin (Chou

et al. 2001, Crocker et al. 2005). At the ultrastructural

level it remains to be determined whether orexins and

dynorphin are co-stored in the same pre-synaptic

vesicles, but if they are, it is reasonable to assume that

they are released together (Salio et al. 2006). In addi-

tion, the BF and nearly all brain regions innervated by

the orexin neurones express j opiate receptors, the main

receptor for dynorphin (DePaoli et al. 1994, Mansour

et al. 1994, Marcus et al. 2001). This is remarkable

because orexin-A and orexin-B excite their target

neurones, but dynorphin has inhibitory effects.

Possibly, orexin and j receptors reside on different

target neurones or are located on different parts of the

target neurones. For example while orexins directly

excites TMN neurones and NPY neurones of the

arcuate nucleus (Eriksson et al. 2001, van den Top

et al. 2004, Acuna-Goycolea & van den Pol 2005),

dynorphin has no post-synaptic effects but reduces

GABAergic synaptic input to these neurones (Eriksson

et al. 2004, Li & van den Pol 2006). Thus in these two

nuclei, co-release of orexins and dynorphin should

produce synergistic effects that increase activity in the

target cell. Another mechanism is that orexins and

dynorphin may have effects that differ over time. For

example, the melanin-concentrating hormone (MCH)

neurones are initially inhibited by dynorphin when

orexins and dynorphin are co-applied, but this response

desensitizes quickly, and over time, the excitatory effect

of orexins dominates (Li & van den Pol 2006). Perhaps

this same phenomenon occurs in neurones of the locus

coeruleus and dorsal raphe in which orexins and

dynorphin seem to act in opposition (McFadzean et al.

1987, Pinnock 1992, Hagan et al. 1999, Ivanov &

Aston-Jones 2000, Brown et al. 2001, 2002, Hoang

et al. 2003, Kohlmeier et al. 2008, Kreibich et al.

2008). This finding has interesting implications, as one

could speculate that during a brief arousal from sleep,

the excitatory effects of orexins could be initially

damped by the inhibitory effects of dynorphin, but if

the orexin neurones remain active, dynorphin signalling

would desensitize and the excitatory effects of orexins

would then help sustain wakefulness.

In addition to dynorphin, the orexin neurones also

produce and probably release glutamate (Abrahamson

et al. 2001, Torrealba et al. 2003). Orexins and gluta-

mate localize at the same terminals but in different

vesicles. Glutamate is stored in small clear vesicles in

the active zones while orexin peptides is confined in

large dense core vesicles (Torrealba et al. 2003). If

co-released, orexins and glutamate should act synergis-

tically to excite BF and other target neurones. As the

release of neuropeptides may require a higher firing

frequency than the release of glutamate (De Camilli &

Jahn 1990), it is conceivable that low frequency firing of

the orexin neurones may release predominantly gluta-

mate but higher frequency firing may promote the

additional release of orexins from dense core vesicles.

Another molecular marker found to colocalize with

orexins is the neuronal activity-regulated pentraxin

(NARP), a secreted immediate early gene product.

NARP is a synaptic signalling protein that stimulates

clustering of glutamatergic AMPA receptors (Tsui et al.

1996, Fong & Craig 1999, O’Brien et al. 1999). The

orexin neurones of mice and humans express NARP

(Reti et al. 2002, Blouin et al. 2005, Crocker et al.

2005), and it is possible that NARP itself potentiates

pre- or post-synaptic responses to glutamate.

Much remains to be learned about the functional

roles of dynorphin, glutamate and NARP in the orexin

neurones. However, mice lacking the orexin neurones

seem to have a slightly different narcolepsy phenotype

and a greater tendency towards obesity than mice

simply lacking orexins (Chemelli et al. 1999, Hara et al.

2001, 2005, Kantor et al. 2009), perhaps due to loss of

the other signalling molecules.

Role of the MCH neurones

In addition to the orexin neurones, the lateral hypo-

thalamus also contains neurones that produce the

inhibitory peptide MCH. Their firing pattern is roughly

opposite to the orexin neurones; MCH neurones are

silent during wake, fire occasionally during non-REM

sleep and fire maximally during REM sleep (Hassani

et al. 2009). Pharmacological studies and recordings of

MCH knockout mice suggest that the MCH system

promotes sleep, perhaps especially REM sleep (Verret

et al. 2003, Adamantidis & de Lecea 2008, Willie et al.

2008). MCH neurones contain GABA, they project to
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the BF and MCH-R1 are expressed in the BF (Bitten-

court & Elias 1998, Hervieu et al. 2000, Elias et al.

2001). Thus, during sleep, the release of MCH and

GABA could inhibit cholinergic and non-cholinergic

wake-active BF neurones, but this has not yet been

tested directly.

A model of how the orexin neurones mediate

arousal through the BF

Considerable evidence suggests that the BF is a key site

through which the orexin neurones promote the main-

tenance of wakefulness as well as arousals from sleep.

Here we present a testable model of how this may occur

(Fig. 4).

First, orexins may directly excite cortically projecting,

wake-promoting cholinergic neurones of the BF (Egger-

mann et al. 2001, Espana et al. 2001, Thakkar et al.

2001, Fadel et al. 2005). We have found that MCPO/SI

cholinergic neurones that project to the cortex are

excited by orexins, but do not respond to dynorphin

and thus probably lack j receptors (Fig. 2).

Second, orexins may directly excite cortically pro-

jecting, wake-promoting non-cholinergic neurones.

Most likely these cells produce GABA (Duque et al.

2000, Manns et al. 2000) and reduce the activity of

inhibitory cortical interneurones (Freund & Gulyas

1991, Semba 2000). We found that non-cholinergic

cortically projecting MCPO/SI neurones that display

the electrophysiological characteristics of GABAergic

neurones are strongly excited by orexin-A with no direct

response to dynorphin except for slight inhibition of

excitatory input (Fig. 3).

Third, orexin may enhance glutamate release in the

BF by acting on terminals or soma of glutamatergic

neurones. In support of this mechanism, dialysis of

orexin-A into the BF increases local release of glutamate

(Fadel & Frederick-Duus 2008). Furthermore, we have

found that orexin-A increases evoked EPSCs in cholin-

ergic and non-cholinergic (putative GABAergic) corti-

cally projecting neurones. In BF, the source of this

glutamate is currently unknown; it may be released

from the terminals of BF neurones (Manns et al. 2001,

Hur & Zaborszky 2005, Henny & Jones 2008, Wu

et al. 2009), orexin neurones, or inputs from the cortex,

midline thalamus or PPT tegmental nucleus (Grove

1988, Carnes et al. 1990, Zaborszky et al. 1997).

Fourth, release of dynorphin from orexin nerve

terminals may inhibit the activity of sleep-promoting

neurones in the BF and GABAergic neurones that inhibit

the wake-promoting neurones. These sleep-active neu-

rones may produce GABA and NPY, and during wake

they may be inhibited by noradrenaline via a2 receptors

(Duque et al. 2000, Manns et al. 2000, 2003a,b,

Zaborszky & Duque 2003, Lee et al. 2004, Modirrou-

sta et al. 2004).

This model encompasses many aspects of BF neuro-

biology, but it is still a simplification. The model does

not include the descending projections from the BF to

state-regulatory regions in the lateral hypothalamus and

brainstem (Swanson et al. 1984, Semba et al. 1989,

Gritti et al. 1994) that may play important roles in

sustaining wakefulness. Instead, this model concentrates

on the ascending signals from the BF that provide the

most direct route for cortical activation.

How might intermittent activity in the orexin neuro-

nes produce sustained periods of wakefulness? The

orexin neurones fire mainly during active wake (Lee

et al. 2005b, Mileykovskiy et al. 2005, Takahashi et al.

2008), yet the sleepiness of narcolepsy is most apparent

during quiet wake when an individual is sedentary

(Scammell 2003). This paradoxical pattern may be

explained by recent in vitro studies showing that orexins

produce long-lasting effects that persist even after

their washout, suggesting that the effects of orexins

may last longer than the firing of the orexin neurones

(Selbach et al. 2004, Borgland et al. 2006). Orexin-A,

probably through Ox1 receptors, produces sustained

potentiation of glutamatergic synaptic transmission in

Figure 4 Pathways through which the orexin neurones may

activate the basal forebrain (BF) to promote wakefulness.

Orexins excite wake-promoting cholinergic and non-choliner-

gic neurones (most of which probably contain GABA). Orexins

also enhance release of glutamate in the BF. In contrast,

dynorphin released from the orexin neurones acts through

j opiate receptors (KOR) to inhibit sleep-active cells, including

GABAergic interneurones. Solid lines indicate pathways active

during wake; dashed lines indicate pathways active during

sleep. Arrows indicate excitatory inputs; bars indicate inhibi-

tory inputs. Not shown are the descending projections to the

thalamus, hypothalamus and brainstem.
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the hippocampus (Schaffer collateral CA3 fi CA1) and

in ventral tegmental area (VTA) neurones (Selbach et al.

2004, Borgland et al. 2006). In the VTA, this long-term

potentiation is mediated by an increase in the expression

of NMDA receptors that lasts for several hours. Orexins

may similarly increase glutamatergic signalling in neu-

rones of the BF through a pre-synaptic mechanism or by

up-regulation of post-synaptic glutamatergic receptors.

This would make wake-promoting BF neurones more

excitable, resulting in more potent and persistent acti-

vation of the cortex. This mechanism would also help

explain how even intermittent activity in the orexin

neurones helps sustain long periods of wakefulness.

Alternative mechanisms

Our model focuses on the BF, but the orexin neurones

may promote arousal through other pathways. One

possibility is that orexins stabilize wake through

monoaminergic neurones such as the TMN, locus

coeruleus, raphe nuclei or cholinergic neurones of

the PPT and LDT nuclei because microinjections of

orexin-A into these and other regions increase neuronal

firing and produce arousal (Bourgin et al. 2000, Brown

et al. 2001, 2002, Huang et al. 2001, Xi et al. 2001,

Burlet et al. 2002, Saper et al. 2005).

Another hypothesis is that orexins directly excite

cortical neurones. However, only neurones in lamina 6b

directly respond to orexin-B (Bayer et al. 2004). These

cells might help coordinate activity across cortical

regions, but it seems unlikely that this limited population

promotes generalized arousal. Orexins also has been

hypothesized to indirectly excite the cortex by acting on

neurones of the midline and intralaminar thalamic nuclei

(Bayer et al. 2002, Ishibashi et al. 2005, Govindaiah &

Cox 2006, Huang et al. 2006, Kolaj et al. 2007) and on

their cortical inputs (Lambe & Aghajanian 2003, Lambe

et al. 2005). These ‘non-specific’ nuclei project to

widespread regions of the cortex (Van der Werf et al.

2000), but a direct wake-promoting role seems unlikely

as lesions of the midline thalamus have little impact on

the amounts of wake (Buzsaki et al. 1988). Thus, in

addition to the BF, orexins can activate other arousal

systems that may help promote and maintain waking

and behavioural arousal.

Future directions

We have reviewed evidence suggesting that the BF is a

key target through which the orexin neurones promote

wake, yet many fundamental questions remain

unanswered. Is orexin signalling in the BF necessary

or sufficient to maintain normal wakefulness? Which

BF neurones mediate orexin responses and through

which electrophysiological and neurochemical mecha-

nisms do orexins and dynorphin promote wake?

Defining these mechanisms should provide many novel

insights into how the orexin neurones sustain arousal,

improve alertness and regulate other key functions of

the BF.
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